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Abstract

Background: Exposure to atmospheric particulate matter (PM) remains an important public health concern,
although it remains difficult to quantify accurately across large geographic areas with sufficiently high spatial
resolution. Recent epidemiologic analyses have demonstrated the importance of spatially- and temporally-resolved
exposure estimates, which show larger PM-mediated health effects as compared to nearest monitor or
county-specific ambient concentrations.

Methods: We developed generalized additive mixed models that describe regional and small-scale spatial and
temporal gradients (and corresponding uncertainties) in monthly mass concentrations of fine (PM2.5), inhalable
(PM10), and coarse mode particle mass (PM2.5–10) for the conterminous United States (U.S.). These models expand
our previously developed models for the Northeastern and Midwestern U.S. by virtue of their larger spatial domain,
their inclusion of an additional 5 years of PM data to develop predictions through 2007, and their use of refined
geographic covariates for population density and point-source PM emissions. Covariate selection and model
validation were performed using 10-fold cross-validation (CV).

Results: The PM2.5 models had high predictive accuracy (CV R2=0.77 for both 1988–1998 and 1999–2007). While
model performance remained strong, the predictive ability of models for PM10 (CV R2=0.58 for both 1988–1998 and
1999–2007) and PM2.5–10 (CV R2=0.46 and 0.52 for 1988–1998 and 1999–2007, respectively) was somewhat lower.
Regional variation was found in the effects of geographic and meteorological covariates. Models generally
performed well in both urban and rural areas and across seasons, though predictive performance varied somewhat
by region (CV R2=0.81, 0.81, 0.83, 0.72, 0.69, 0.50, and 0.60 for the Northeast, Midwest, Southeast, Southcentral,
Southwest, Northwest, and Central Plains regions, respectively, for PM2.5 from 1999–2007).

Conclusions: Our models provide estimates of monthly-average outdoor concentrations of PM2.5, PM10, and PM2.5–10

with high spatial resolution and low bias. Thus, these models are suitable for estimating chronic exposures of
populations living in the conterminous U.S. from 1988 to 2007.
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Background
Understanding the health impacts resulting from exposure
to atmospheric particulate matter (PM) air pollution re-
mains a priority for environmental public health. The phys-
ical and chemical characteristics of PM affect its relevance
to human health, as demonstrated by the observed differ-
ences in behavior, composition, and health impacts for fine
(PM<2.5 μm in aerodynamic diameter: PM2.5) and coarse
(2.5<=PM<10 μm in aerodynamic diameter: PM2.5–10) par-
ticles [1-3]. These differences make it important to exam-
ine the health effects of PM using exposure assessment
methods able to capture variation in the levels of each PM
size fraction across the spatial and temporal scales relevant
to health outcomes, especially when studies are conducted
over large geographic areas. Traditionally, however, epi-
demiologic studies of the chronic health effects of PM
air pollution have used crude methods to assess particu-
late exposures, estimating subject’s chronic exposure ei-
ther by imputing ambient concentrations from the
nearest monitor or by using area-wide averages [2], thus
ignoring within-city spatial gradients in air pollutant
levels and restricting these studies to areas with nearby
monitoring data.
To avoid these limitations, more sophisticated methods

to assess long-term air pollution exposures have been re-
cently developed that provide location-specific (e.g., at a
residence) information on exposure and that can be ap-
plied to large populations living across large geographic
areas [4-16]. Many of these studies [4-8,11-15] used
location-specific geographic characteristics such as popu-
lation density or the proximity of roadways to describe
small-scale spatial variations in air pollutant levels (i.e.,
land use regression (LUR)). Others have used spatial mod-
eling of long-term averages or time-period-specific levels
alone [9,10] or in combination with LUR [6,16]. Addition-
ally, spatio-temporal modeling methods have also been de-
veloped which include LUR covariates [14,15] to model air
pollutant levels at unmeasured locations. In one such ap-
plication, McMillan et al. [17] incorporate the output of a
deterministic Eulerian atmospheric chemistry and trans-
port simulation model (the U.S. Environmental Protection
Agency’s Community Multi-scale Air Quality model) in a
spatio-temporal model using Bayesian fitting methods.
Also, spatio-temporal models have included observations
of satellite–based aerosol optical depth (AOD) [18-24] to
predict PM concentrations over both small [18,19] and
large spatial domains [23,24], with mixed results.
In our previous work, we developed and validated spatio-

temporal generalized additive mixed models (GAMMs) of
outdoor PM2.5 and PM10 levels for the Northeastern and
Midwestern U.S. that included geographic information
system (GIS)-based time-invariant spatial covariates and
time-varying covariates such as meteorological data
[11-13]. We showed that PM2.5, PM10, and PM2.5–10 levels
were estimated with a high degree of accuracy (predicted
values did not display bias, on average, in comparison with
measured values) and precision (predicted values were
strongly correlated with observed values) and that the
models were able to account for both within- and between-
city variation in PM concentrations. When our models
were used to assess chronic PM exposures in epidemio-
logical studies, we found higher health risks than when sim-
pler exposure assessment approaches were used [11,25,26],
likely due to the models’ ability to reduce exposure error by
estimation of within-city variability in PM levels, specifically
in traffic-related PM.
Our previous GIS-based spatio-temporal exposure

models used for the Nurses’ Health Study [11-13] were de-
veloped only for the Northeastern and Midwestern U.S.
and for 1988–2002. In the present analysis, we expand the
modeling domain to the conterminous U.S. and include
PM2.5 and PM10 monitoring data through 2007. We dem-
onstrate the predictive accuracy of a computationally effi-
cient but flexible spatio-temporal modeling approach,
applied to the conterminous U.S., which combines spatial
smoothing and regionally-varying non-linear smooth func-
tions of time-varying and time-invariant geographic and
meteorological covariate effects. Also, we evaluate the po-
tential for improved model prediction resulting from the
use of geographic covariates with higher spatial resolution
than those used previously for traffic density, population
density, and point-source emissions density.

Methods
We developed three separate GIS-based spatio-temporal
models of PM levels: 1) PM2.5 from 1999–2007, 2) PM2.5

from 1988–1998, and 3) PM10 from 1988–2007. As with
our previous models for the Northeastern and Midwestern
U.S. [11-13], these models used measured PM concentra-
tions, monitoring site locations, GIS-based location-
specific characteristics and location- and month-specific
meteorological data, and spatial smoothing of monthly
and long-term average levels to describe large- and small-
scale spatial variability and temporal variability in PM2.5

and PM10 levels over time.

Air pollution, geographic, and meteorological data
Air pollution data
Monthly mean PM2.5 and PM10 values were calculated
from available monitoring data using the same methods as
for our previous models [12,13]. Briefly, PM2.5 and PM10

measurement data from 1988–2007 were obtained from
the U.S. Environmental Protection Agency’s Air Quality
System (AQS) network, from the Interagency Monitoring
of Protected Visual Environments (IMPROVE), Clean Air
Status and Trends (CASTNet), Stacked Filter Unit (SFU),
Southeastern Aerosol and Visibility Study (SEAVS), Meas-
urement of Haze and Visual Effects (MOHAVE), and
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Pacific Northwest Regional Visibility Experiment Using
Natural Tracers (PREVENT) networks by accessing the
Visibility Information Exchange Web System [27], from
three Harvard-based research studies: the “Five Cities”
study [28], the “24 Cities” study [29], and the “Six
Cities” study [30], and from the Southern Aerosol Re-
search and Characterization Study (SEARCH) network
[31]; summary statistics on the monitoring data can be
found in Additional file 1: Table S1. Monthly means were
calculated by first averaging 24-hr mean values at each
monitoring site, and then averaging the daily (with the ex-
ception of CASTNet which provided 2-week means) site
means within the calendar month, provided that greater
than approximately 70% of the nominal days had valid
PM2.5 or PM10 values. The AQS contributed the bulk of
the monthly means and sites (94 and 91%, respectively, for
the 1999–2007 PM2.5 model; 89 and 86%, respectively, for
the 1988–1998 PM2.5 model; and 93 and 89%, respectively,
for the PM10 model).

Geographic data
Characteristics of the PM monitoring sites were quanti-
fied using a GIS (ArcMap 10.1, Environmental Systems
Research Institute (ESRI), Redlands, CA). We considered
only geographic data available (i.e., non-missing) over
the conterminous U.S. to facilitate generating model pre-
dictions at any location within this domain. The Albers
Equal Area Conic U.S. Geological Survey (USGS) projec-
tion was used for all geographic data.
We estimated traffic density using data from the U.S.

Bureau of Transportation Statistics 2005 National
Highway Planning Network (NHPN) [32] using a ker-
nel density function (ESRI Spatial Analyst) evaluated on a
30 m cell size raster. The kernel density approach involves
deriving locally varying values by applying weights from a
quadratic kernel within a specified neighborhood [33].
The neighborhood for this function was specified at
100 m based on data from previous studies of near-road
pollutant decay [34,35]. Distance to nearest road values
were also generated for each monitoring site for U.S.
Census Feature Class Code (CFCC) road classes A1
(primary roads, typically interstates, with limited ac-
cess), A2 (primary major, non-interstate roads), A3
(smaller, secondary roads, usually with more than one
lane in either direction), and A4 (roads used for local
traffic usually with one lane in either direction) roads
using ESRI StreetMap Pro 2007 road network data. Dis-
tance to road values were truncated at 500 m; as a result
this term represented only micro- to middle-scale local
variability in PM levels near roadways.
The proportion of residential (low-intensity and high-

intensity) and urban (low-intensity and high-intensity
residential, and industrial/commercial/transportation)
land use was calculated for each location using
neighborhoods of 1 and 4 km, using data from the U.S.
Geological Survey (USGS) 1992 National Land Cover
Dataset [36]. Tract-level population density data de-
rived from the 1990 U.S. Census were obtained [37] and
converted to a 500 m cell-size raster, based on the location
of the center of each cell. Density values at each cell
were averaged with the values at four adjacent cells, one
in each cardinal direction, to reduce spatial discontinu-
ities across cells. County-level population density data
from the 1990 U.S. Census were obtained from ESRI
Data & Maps and were spatially smoothed from county
geographic centroids to prediction locations using a
generalized additive model (GAM) with spatial bivariate
thin-plate penalized splines [38].
We estimated the density of point-source emissions

of PM2.5 and PM10 using kernel density functions
(ESRI Spatial Analyst) with neighborhoods of 3, 7.5,
and 15 km and data from the U.S. EPA’s 2002 National
Emissions Inventory [39]. In our earlier work, 1 and
10 km buffers were used [11-13]. Larger neighbor-
hoods were chosen for this analysis to reflect more dis-
tant sources; however, values at greater distances were
down-weighted due to use of the kernel density func-
tion. Also, neighborhoods with<=50% overlap were
chosen, to minimize collinearity.
Elevation data were obtained in raster format from the

USGS’s National Elevation Dataset [40] (with a native
resolution of ~ 30 m) and averaged using a moving win-
dow with a radius of 300 m.
The traffic density within 100 m, distance to nearest

road, tract- and county-level population density, and
point-source emissions density covariates were natural-log
transformed, after the addition of a constant, to obtain a
more uniform distribution and thereby improve stability
in the estimation of the penalized spline smooth functions,
using the formula:

Zi;t ¼ ln Z�
i;t− 10−min Z�

i;t
� �� �� ð1Þ

where Zi. t is the transformed covariate, Z*i,t is the covar-
iate on the native scale, and the constant 10 was chosen
to reduce the leverage of values near zero. Similarly, the
elevation covariate was transformed using a square root
transformation after adding a constant to ensure a mini-
mum value of one.

Meteorological data
Monthly average wind speed, temperature, and total
precipitation measurements were obtained from the
National Climatic Data Center (NCDC) and spatially
smoothed using separate GAMs, as specified below, for
each month and for each of seven regions of the conter-
minous U.S. (Figure 1), with region boundaries based
loosely on the U.S. Census Regions [41]. Monthly



Figure 1 1999–2007 PM2.5, 1988–1998 PM2.5, and PM10 monitor locations, as well as regions of the conterminous U.S.
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predictions of the meteorological parameters at the pre-
diction locations (monitoring sites, grid points, or geo-
coded subject residences) were then made using the
fitted models. The form of these models was:

yi;t ¼ αt;r þ gt;r sið Þ þ ei;t ; ei;teN 0; σ2t;r
� � ð2Þ

where yi,t represents the measured values for a given me-
teorological parameter at i = 1… Ir sites in each of seven
geographical regions indexed by r (Northeast, Midwest,
Southeast, Southcentral, Southwest, Northwest, and
Central Plains; Figure 1) and t = 1…T monthly time pe-
riods (T =240 for 1988–2007), and si is the projected
spatial coordinate pair for the ith location. gt,r(si) accounts
for residual monthly spatial variability within the region,
specified as spatial bivariate thin-plate penalized spline
terms with basis dimension kt,r = It,r * 0.9. The value of 0.9
was chosen such that the basis dimension was as large as
practicable which allowed the data to determine the com-
plexity of the fitted functions, but was essentially arbitrary.
To reduce the potential for over-fitting, a multiplier of 1.4
(using the gamma argument to gam()), as recommended
by Wood [39], p. 195, was used. Additionally, data on the
percentage of stagnant air days per month from the
NCDC’s Air Stagnation Index [42] were obtained, natural-
log transformed, and spatially smoothed using GAMs
(Equation 2) for each month and region.
Statistical models
The 1999–2007 PM2.5 model
The generic form of the 1999–2007 PM2.5 model was:

yi;t ¼ αþ αt;r þ
X
q

dq Xi;q
� �þX

p

f p;r Zi;t;p
� �þ gt;r sið Þ

þ g sið Þ þ bi þ ei;t; bieN 0; σ2
bð Þ; ei;teN 0; σ2

e r;t
� �

ð3Þ

where yi,t is the natural-log transformed monthly average
PM2.5 for i = 1…Ir sites in each of the seven geographic
regions indexed by r (Figure 1) and I sites in total and
t = 1…T monthly time periods (T=108 for PM2. 5 from
1999–2007), and si is the projected spatial coordinate
pair for the ith location. Xi,q are GIS-based time-
invariant spatial covariates for q = 1…Q, Zi,t,p are time-
varying covariates for p = 1…P, and αt,r is a monthly
intercept that represents the mean across all sites within
the region. dq and fp,r are one-dimensional penalized
spline smooth functions for Q GIS-based time-invariant
spatial covariates and P time-varying meteorological
covariates, respectively, each with a basis dimension of
10. gt,r(si) accounts for residual monthly spatial vari-
ability within the region, and g(si) for time-invariant
spatial variability across the conterminous U.S., with
both terms specified as spatial bivariate thin-plate penal-
ized splines with basis dimension values: kt,r = It,r * 0.9
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and k = (I −Q) * 0.9, respectively. The site-specific random
effect bi represents unexplained site-specific variability;
thus our characterization of the model as a GAMM.
We used a two-stage modeling approach to fit the above

model (Equation 3). In the first stage (Equation 4), we esti-
mated site-specific intercepts (ui) adjusting for time-
varying covariates and residual monthly spatial variability
separately for each of the seven geographic regions. This
allowed the effects of time-varying covariates to vary
among the regions, and assumed that the residual monthly
spatial terms were stationary and isotropic only within the
region rather than across the entire conterminous U.S. Fit-
ting the first stage regionally, rather than for the entire
conterminous U.S. at once, also reduced the computa-
tional burden of model fitting, necessary due to the large
number of monthly observations (120,618 for PM2.5 from
1999–2007). Data from areas of adjacent states within
about 400 km of each region were included in the regional
first-stage models to minimize potential boundary effects.
The first stage model equation was:

yi;t ¼ ui þ αt;r þ
X
p

f p;r Zi;t;p
� �þ gt;r sið Þ þ ei;t; ei;teN 0; σ2

e r;t
� �

ð4Þ
and was fit iteratively for each region in a back-fitting ar-

rangement [43,11-13] with ui þ αt;r þ
X
p

f p;r Zi;t;p
� �

es-

timated jointly and gt,r(si) estimated separately by month,
such that variability in the measured concentrations is
parsed between the covariates and the residual spatial
terms. For the spatial models in the first stage, a multi-
plier of 1.4 (using the gamma argument to gam()) was
used to avoid over-fitting [39], p. 195, except in the
Northwest region, where, due to limited data, a value of
1.8 was used. All individual fits within the back-fitting
were done using the gam() function in the mgcv package
[44] of R [45].
In the second stage, we fit a spatial model to the uˆi vec-

tor of values obtained from the regional first-stage models
using GIS-based time-invariant spatial covariates and re-
sidual time-invariant spatial variability. To do this, we
combined the regional data sets from the first stage, after
eliminating the overlapping data from the 400 km regional
buffers. Thus the second stage (Equation 5) was fit to data
from the entire conterminous U.S. (i.e., all seven regions),
and was:

ûi ¼ αþ
X
q

dq Xi;q
� �þ g sið Þ þ bi; bieN 0; σ2bð Þ

ð5Þ
where û i is an estimated site-specific intercept that rep-
resents the adjusted long-term mean at each location;
the other terms are as above. The second stage was also
fit using the gam() function in the mgcv package of R.
Because we included data from the entire conterminous
U.S. in the second stage, we investigated the extent to
which the time-invariant covariate effects varied by re-
gion of the country. We did this by including interaction

terms by region, adding: αr þ
X
r

dr;q Xi;q �Mi
� �

separ-

ately to the model for each covariate q, where αr is a cat-
egorical variable for the main effect of region, and Mi is
a zero/one indicator for whether location i is in a given
region or not. We also explored regional interactions of
covariate effects that varied smoothly in space using ten-
sor products of penalized smoothing spline bases [39].

The 1988–1998 PM2.5 model
As in our previous work [13], the generic form of the
1988–1998 PM2.5 model was:

yi;t ¼ αþ
X
q

dq Xi;q
� �þX

p
f p;r Zi;t;p

� �þ h tð Þ þ gSeas;r sið Þ

þ g sið Þ þ bi þ ei;t; bieN 0; σ2
bð Þ; ei;teN 0; σ2

e;t
� �

ð6Þ

where the terms are as above except that the response
variable yi,t is the natural-log transformed ratio of monthly
average PM2.5 to model predicted PM10. Note that data
from 1988–2007 were used for model fitting. Thus T =
240 even though this model was used to predict PM2.5

levels for only the 132 months from 1988–1998. The
model was fit to 130,594 observations; 419 value were de-
leted as outliers where monthly average PM2.5 was greater
than 1.5 times predicted PM10. Also, to account for non-
linearity in the ratio as predicted PM10 levels increase, pre-
dicted PM10 (from Equation 3) was included in the model
as an additional time-varying covariate Zi,t,p. Finally, gSeas,r
(si) accounts for residual seasonal spatial variability within
the region for each of four seasons (winter, spring, sum-
mer, autumn), rather than for each month. The model
was fit using a two-stage approach, as for the 1999–
2007 PM2.5 model above.

The 1988–2007 PM10 model
The generic form as well as model fitting of the 1988–
2007 PM10 model was the same as for the 1999–
2007 PM2.5 model, except that the response variable, yi,t,
was the natural-log transformed monthly average PM10

and T = 240, with 280,060 monthly observations from
1988–2007. The model was fit using a two-stage ap-
proach, as for the 1999–2007 PM2.5 model above.

Model predictions
We obtained model predictions from each model by gen-
erating the covariates at locations of interest (either moni-
toring locations for model evaluation or grid locations for
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display purposes) for each month, and then transforming
to the native scale by exponentiation. To avoid ex-
trapolation, covariates at prediction locations beyond
their range among the monitoring locations were set
to the appropriate minimum or maximum among the
monitoring locations (doing so within each region for
time-varying covariates). For the 1988–1998 PM2.5

model, exponentiation yields the predicted PM2.5:PM10

ratio (which was truncated to a maximum value of one,
affecting only 0.8% of the data), which was multiplied by

predicted PM10 to obtain predicted PM2.5

�
PMˆ 2:5 i;t ¼ exp

yˆratio i;t

� �
� exp yˆPM10 i;t

�� �
for 1988–1998. We calcu-

lated PM2.5–10 levels at unmeasured locations and months
by subtracting predicted PM2.5 from predicted PM10

(PMˆ 2:5−10 i;t ¼ PMˆ 10 i;t−PM
ˆ

2:5 i;t , notation as above).
We generated estimates of uncertainty in model pre-

dictions (i.e., standard errors) from the 1999–2007 PM2.5

and 1988–2007 PM10 models on the natural-log scale
using methods described previously [11,12]. For these
models, 95% prediction intervals on the natural-log scale
were calculated and exponentiated to assess prediction
interval coverage. To generate standard errors for the
1988–1998 PM2.5 model, we propagated errors in the
predicted PM2.5:PM10 ratio and predicted PM10 levels on
the native scale (see Additional file 1 for details). We
also propagated errors in the PM2.5–10 predictions on
the native scale using standard methods, assuming inde-

pendence among the PMˆ 2:5 and PMˆ 10 errors. For 1988–
1988 PM2.5 model predictions as well as for PM2.5–10

predictions, prediction interval coverage was assessed
using 95% prediction intervals based on these native-
scale standard errors.
Model validation
We used 10-fold out-of-sample cross-validation (CV) to
evaluate model predictive accuracy and thereby inform
covariate selection. For the 1999–2007 PM2.5 and 1988–
2007 PM10 models, monitoring sites were selected at
random and assigned exclusively to one of 10 sets. Be-
cause few PM2.5 data were available prior to 1999, we
used data from the year 2000 for CV of the 1988–
1998 PM2.5 model. To do this, we first identified a sub-
set of sites that reported at least 10 monthly PM2.5

values in 2000 and at least 70 monthly PM2.5 values
across 1988–2007. We then randomly selected from
among these sites data not to be used for CV (ensuring
reasonable spatial coverage within each region by ma-
nipulating the random seed), with the goal of making
the data for 2000 similar to that in years prior to 1999
for the purpose of model fitting. We subsequently di-
vided the remaining monitoring sites that reported data
in 2000 at random and assigned each site exclusively to
one of 10 sets. Since the covariate selection process in-
volved fitting multiple candidate models to the same data,
set 10 was reserved (i.e., not used for model fitting) to as-
sess whether the covariate selection process contributed
to over-fitting. Data from sets one to nine (each set con-
tains approximately 10% of the data for the 1999–
2007 PM2.5 and 1988–2007 PM10 models) were removed
from the data set sequentially, with the model fit to the
remaining data and model predictions generated at the lo-
cations and months of the left-out observations.
The predictive accuracy of each PM model was deter-

mined from the squared Pearson correlation between the
monthly left-out observations and model predictions (CV
R2), with both on the native rather than the natural-log
scale. Spatial CV R2 values were calculated similarly but
on the long-term means (i.e., one mean per site) of the
monthly values. Prediction errors were calculated by sub-
tracting left-out observations from the model predictions.
Bias in model predictions was determined using the nor-
malized mean bias factor (NMBF) [Shaocai Yu, personal
communication] and the slope from major-axis linear
regression [46] of the natural-log transformed left-out ob-
servations against the natural-log transformed model pre-
dictions. The precision of model predictions was obtained
by taking the mean of the absolute value of the prediction
errors (CVMAE) and using the normalized mean error fac-
tor (NMEF) [Shaocai Yu, personal communication]. For-
mulas for the NMBF and NMEF are provided in Additional
file 1. Bias and precision values from CV were evaluated
overall, and by region of the country, urban land use, sea-
son, monitoring network, and monitoring objective.

Model development and covariate selection
For each model, we first fit a ‘base’model using the follow-
ing covariates based on our earlier work [11-13]: distance
to nearest road for U.S. CFCC road classes A1-A3,
smoothed county-level population density, urban land use
within 1 km, elevation, point-source emissions density
within 7.5 km (of PM2.5 emissions for the PM2.5 models
and PM10 emissions for the PM10 model), smoothed
monthly average wind speed, temperature, total precipita-
tion, and air stagnation. The 1988–2007 PM10 model also
included tract-level population density. To ensure a parsi-
monious model specification, we then removed each time-
varying term to evaluate its contribution and kept in the
model only those that improved predictive accuracy (using
the ‘base’ set of covariates in the second-stage model).
Using the remaining time-varying covariates, we then
added or substituted GIS-based time-invariant spatial co-
variates into the second stage of the model, selecting the
model with the highest spatial CV R2, after removing
those not statistically significant (p>0.05) per the result of
Wald tests [38]. As in prior work, only those covariates
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expected a priori to have a positive or negative physical in-
fluence on PM levels were considered for inclusion. For
example, increasing wind speed (a proxy for the amount
of vertical mixing in the atmosphere) was expected to re-
sult in decreased PM2.5 concentrations due to dilution of
pollutant emissions. Non-linearity in covariate effects was
accounted for using penalized spline terms, with the ‘sp’
argument to gam() used to limit each penalized spline
terms to at most six degrees of freedom (df). Similarly, we
used the ‘sp’ argument to gam() to evaluate reducing the
df of the spatial term in the second stage of the 1999–
2007 PM2.5 model.

Results
Spatial patterns in model predicted PM2.5, PM10, and
PM2.5–10 concentrations
The maps in Figures 2, 3 and 4 show the spatial distribu-
tion of long-term average model predicted PM2.5, PM10,
and PM2.5–10 levels across the contiguous U.S. (see
Additional file 2 for an atlas of monthly PM2.5 levels
from January 1988 to December 2007). Summary statis-
tics of measured and predicted levels for each of the PM
size fractions are presented in Additional file 1: Table S1
overall, by region, and by network for the 1999–2007
and 1988–1998 time periods. Generally, PM2.5 levels were
highest in southern California, and were elevated across
the eastern as compared to western U.S. PM10 and
PM2.5–10 levels were also highest across the Southwest and
Central Plains regions (presumably due to greater contri-
butions from windblown dust than in other areas), and
were generally more spatially variable than PM2.5. Areas of
higher elevation had generally lower predicted PM2.5 and
PM10 levels. Increases in model predicted PM levels in
areas with higher urban land use are also evident, espe-
cially for PM2.5.
Figure 2 Means of monthly predicted PM2.5 concentrations on a 6 km
for A) 1999–2007 and B) 1988–1998.
At the spatial resolution (6 km) shown in Figures 2, 3
and 4, it is not possible to discern the micro- and middle-
scale impacts of the distance to road covariates, though
they are evident in Figures 5, 6 and 7, which display model
predicted PM2.5, PM10, and PM2.5–10 concentrations on a
30 m grid in a selected area of New York City, New York
for August 2006. Of note, sharp gradients in tract-level
population density in this area together with the decreas-
ing smooth function for this covariate result in several
somewhat abrupt changes in predicted PM10 and therefore
also predicted PM2.5–10.
Maps of the mean standard errors of monthly PM2.5,

PM10, and PM2.5–10 model predictions for the contermin-
ous U.S. are shown in Additional file 1: Figures S4-S6.
Though the spatial patterns in the mean of the standard er-
rors (with higher values corresponding to greater average
uncertainty in monthly model predictions) for each PM size
fraction are similar to the corresponding spatial pattern in
mean model predictions, standard errors from the 1999–
2007 PM2.5 model are comparatively higher than model
predictions in the Central Plains region (in eastern Kansas,
for example), and in northwestern Nevada. Also of note,
the magnitude of the standard errors from the 1988–
1998 PM2.5 model is generally greater than that from the
1999–2007 PM2.5 model, reflecting uncertainty related to
the estimation of the PM2.5:PM10 ratio and, separately, of
PM10 levels. A map of the mean predicted PM2.5:PM10 ratio
across 1988–1998 is presented in Figure 8. The estimated
ratio is generally higher in the eastern as compared to the
western U.S., though areas of the Northwest region are also
higher as compared to the rest of the western U.S.

CV results
Results from CV for 1999–2007 for PM2.5, PM10, and
PM2.5–10 are presented in Table 1; for 1988–1998 they
grid over the conterminous U.S. (5th to 95th percentiles shown)



Figure 3 Means of monthly predicted PM10 concentrations
from 1988–2007 on a 6 km grid over the conterminous U.S.
(5th to 95th percentiles shown).
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are presented in Table 2. Overall and when stratified by
region, spatial CV R2 values were higher than those for
corresponding monthly values for PM2.5, PM10, and
PM2.5–10 across 1999–2007 and 1988–1998 (Tables 1
and 2, respectively). CV statistics by season, tertiles of
urban land use, monitoring network, and monitoring ob-
jective are presented for each of the two time periods
above in Additional file 1: Table S2 for PM2.5, PM10, and
PM2.5–10. For both time periods, predictive accuracy was
generally consistent across tertiles of urban land use, mon-
itoring network, and monitoring objective for PM2.5,
PM10, and PM2.5–10. Also model predictive performance
was consistent across seasons, though generally slightly
lower in the winter season as compared to other seasons.
Density scatter plots of monthly measured vs. model
Figure 4 Means of monthly predicted PM2.5–10 concentrations on a 6
shown) for A) 1999–2007 and B) 1988–1998.
predicted PM2.5, PM10, and PM2.5–10 levels from CV are
shown in Additional file 1: Figure S2.

CV results for 1999–2007
PM2.5 Across the conterminous U.S., predictive accuracy
of the 1999–2007 PM2. 5 model was high (CV R2=0.77)
at the monthly average level, though lower in the North-
west at 0.50. Across regions, model predictions exhibited
low bias and high precision (NMBF of −1.6% and NMEF
of 14.3%, respectively), but were less precise in the west
(Southwest, Northwest, and Central Plains regions).
Standard errors in monthly PM2.5 model predictions
were reasonably well-scaled (prediction interval coverage
of 0.98). The model predicted long-term spatial trends
very well (spatial CV R2=0.89).

PM10 Across the conterminous U.S., predictive accuracy
for PM10 monthly model predictions was moderate (CV
R2=0.58) for 1999–2007, though lower in the Southcen-
tral, Northwest, and Central Plains regions (>0.45).
Across regions, we found low bias in model predictions
but only moderate precision (NMBF of −5.1% and
NMEF of 24.4% across regions, respectively). Standard
errors were reasonably well-scaled for the PM10 model
(prediction interval coverage (across 1988–2007) of
0.97). The model predicted long-term spatial trends well
(spatial CV R2=0.69).

PM2.5–10 Across the conterminous U.S., predictive ac-
curacy for PM2.5–10 was moderate (CV R2=0.52). Across
regions, we found low bias but poorer precision than for
PM2.5 or PM10 (NMBF of −3.2% and NMEF of 38.9%, re-
spectively). In the Southcentral region, bias in PM2.5–10
km grid over the conterminous U.S. (5th to 95th percentiles



Figure 5 Predicted PM2.5 concentrations (from the 1999–2007
model) on a 30 m grid in a selected area of New York City,
New York for August 2006 showing local spatial variability
(5th to 95th percentiles shown).

Figure 7 Predicted PM2.5–10 concentrations on a 30 m grid in a
selected area of New York City, New York for August 2006
showing local spatial variability (5th to 95th percentiles shown).
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monthly values was slightly larger and negative (NMBF
of −11.4%); in the Northwest region it was also larger
but positive (NMBF of 18.1%).

CV results for 1988–1998
PM2.5 Across the conterminous U.S., predictive accuracy
for PM2.5 monthly model predictions was again high
(CV R2 = 0.77), though again lower in the Northwest re-
gion at 0.56. Across regions, model predictions exhibited
low bias and high precision (NMBF of −0.8% and NMEF
of 14.8%, respectively), but were again less precise in the
west (Southwest, Northwest, and Central Plains
Figure 6 Predicted PM10 concentrations on a 30 m grid in a
selected area of New York City, New York for August 2006
showing local spatial variability (5th to 95th percentiles shown).
regions). The prediction interval coverage for the 1988–
1998 PM2.5 model of 0.99 indicates that the standard er-
rors are slightly inflated, likely due to the use of the
delta method to approximate standard errors on the
native scale prior to propagation of the uncertainty

when multiplying the estimated PM2.5:PM10 ratio
�
exp

yˆratio i;t

� ��
by predicted PM10

�
exp yˆ PM10 i;t

� ��
.

PM10 Across the conterminous U.S., predictive accuracy
for PM10 monthly model predictions was again moderate
(CV R2=0.58) for 1988–2007, though again lower in the
Southcentral, Northwest, and Central Plains regions for
PM10 (>0.50). Across regions, model prediction exhibited
Figure 8 Means of monthly predicted PM2.5 to PM10 ratios from
1988–1998 on a 6 km grid over the conterminous U.S. (5th to
95th percentiles shown).
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low bias but only moderate precision (NMBF of −3.3%
and NMEF of 21.8% across regions, respectively).

PM2.5–10 Predictive accuracy was moderate for PM2.5–10

(CV R2=0.46 across regions). Across regions, model pre-
dictions again exhibited low bias but precision was poorer
than for PM2.5 or PM10 during the same time period
(NMBF of −4.5% and NMEF of 42.5%, respectively). In the
Northeast region, bias in PM2.5–10 monthly values was
slightly larger and negative (NMBF of −14.6%), whereas in
the Northwest region it was also larger but positive
(NMBF of 27.0%). Predictive accuracy was also substan-
tially lower in the Southeast region (CV R2=0.12). Interest-
ingly, this decrease in predictive accuracy does not appear
to be related to the lower levels of measured PM2.5–10 in
the Southeast region; by contrast the levels in the
Northwest region are comparable (Additional file 1:
Table S1) but predictive accuracy in this region was not
markedly reduced (CV R2=0.54).

Model covariate effects
1999–2007 PM2.5 model covariates
Several GIS-based time-invariant spatial covariates were
found to be important predictors in the 1999–2007 PM2.5

model, including: elevation, urbanized land use within
1 km, county-level population density, distance to nearest
A1, A2, and A3 roads, and point-source emissions density
within 7.5 km.
We found significant interactions by region in the ef-

fects of two GIS-based time-invariant spatial covariates:
urban land use within 1 km and elevation.
For urban land use within 1 km, regional effects in the

Midwest, Southeast, Northwest, and Central Plains regions
were significantly different from the remaining regions. The
estimated smooth functions for this covariate, from the
1999–2007 PM2.5 model, showed that it was generally asso-
ciated with increasing PM2.5 (after adjusting for other
model covariates), with the pattern varying slightly by re-
gion (Additional file 1: Figure S1 panel A5).
For elevation, regional effects in the Southwest,

Northwest, and Central Plains regions were significantly
different from the remaining regions. Increasing eleva-
tion was generally associated with decreasing PM2.5,
with the effects varying substantially by region, espe-
cially in the Northwest region (Additional file 1: Figure
S1 panel A2). Though not visible in Figures 2, 3, 4, 5
and 6, regional covariate effects resulted in small spatial
discontinuities at regional boundaries in monthly pre-
diction surfaces.
Surprisingly, traffic density within 100 m performed

slightly worse than distance to road covariates (A1-A3).
This may have resulted from poorer spatial accuracy of
the network of roads used by the NHPN as compared to
the ESRI StreetMap Pro 2007 road network. Distance to
the nearest A4 road did not increase predictive accuracy
and was removed from the 1999–2007 PM2.5 model.
Increasing county-level population density was positively

associated with measured PM2.5 levels, as was increasing
point-source emissions density within 7.5 km (Additional
file 1: Figure S1 panels A6 and A7, respectively).
As expected due to dilution and wet deposition pro-

cesses, respectively, increasing levels of wind speed and
total precipitation had consistent negative effects on
PM2.5 levels in each of the seven regions (with the ex-
ception of wind speed in the Midwest). The effect of
temperature on PM2.5 levels differed slightly by region
(Additional file 1: Figure S1 panel A1), although PM2.5

levels generally decreased with increasing temperature.
We hypothesize that this counterintuitive result may be
due to cold temperatures acting as a proxy for local
wood smoke emissions and less mixing in the atmos-
phere. In contrast, during warm seasons, higher PM2.5

levels due to increased photochemical production of
secondary aerosol result in a less spatial variability in
PM2.5 which is better captured by the monthly intercept
and monthly spatial smooth terms in non-winter sea-
sons as compared to in winter. We also note that the
moderate correlation between temperature and air stag-
nation (Pearson’s r = 0.69) may interfere with direct in-
terpretation of the effect of temperature alone. Air
stagnation was found to improve predictive accuracy in
only the Midwest and Southeast regions, with increas-
ing stagnation associated with increasing PM2.5 levels
(Additional file 1: Figure S1 panel A11), though in other
regions, especially the southwest, it was inversely asso-
ciated with PM2.5 levels.
The second-stage spatial term g(si) exhibited substantial

complexity in the 1999–2007 PM2.5 model, using 501.6 df.
In contrast, the monthly spatial terms gt,r(si) used fewer df
(median across region and months of 22.7).
1988–1998 PM2.5 model covariates
For the 1988–1998 PM2.5 model, only predicted PM10

and elevation remained in the model as spatial covari-
ates. However, the same four meteorologic covariates as
for the 1999–2007 PM2.5 model were included in this
model. Their effects were similar, except for that of total
precipitation where the ratio increases and then de-
creases, reflecting the complexity of differential wet de-
position processes for fine and coarse mode particles.
We found a significant interaction by region in the effect
of elevation, with the effect in the Northwest region sig-
nificantly different from that in the remaining regions
(Additional file 1: Figure S1 panel B2).
The second stage spatial term g(si) exhibited substan-

tial complexity, using 503.3 df; the seasonal spatial terms
gSeas,r(si) used fewer df (median of 174.1 across regions



Table 1 Bias and precision statistics from cross-validation (CV) of PM2.5, PM10, and PM2.5–10 models from 1999-2007

Pollutant RegionA Monthly values Spatial
CV R2GNB N excludedC Model R2D CV R2 InterceptE SlopeE NMBF (%)F CVMAEF NMEF (%)F

PM2.5 All 108,718 4 0.84 0.77 0.3 0.87 −1.6 1.61 14.3 0.89

Northeast 24,318 0 0.85 0.81 0.2 0.92 −1.4 1.44 11.4 0.88

Midwest 15,767 0 0.85 0.81 0.2 0.91 −0.7 1.31 10.6 0.89

Southeast 24,201 1 0.88 0.83 0.2 0.92 −0.4 1.31 9.7 0.82

Southcentral 12,762 0 0.79 0.72 0.2 0.89 −0.6 1.44 14.1 0.83

Southwest 13,448 2 0.79 0.69 0.4 0.81 −5.5 2.65 26.8 0.83

Northwest 9,052 0 0.65 0.50 0.7 0.62 −4.6 2.07 28.9 0.62

Central Plains 9,170 1 0.72 0.60 0.4 0.81 −2.8 1.66 23.2 0.81

PM10 All 104,509 22 0.71 0.58 0.7 0.77 −5.1 5.21 24.4 0.69

Northeast 16,982 0 0.67 0.57 0.7 0.76 −4.7 4.17 19.8 0.68

Midwest 10,088 0 0.63 0.48 0.9 0.71 −6.0 4.82 21.2 0.56

Southeast 20,316 0 0.62 0.49 0.7 0.76 −4.0 3.89 17.6 0.46

Southcentral 8,092 0 0.61 0.45 0.8 0.74 −6.0 6.24 27.4 0.44

Southwest 24,050 19 0.76 0.62 0.7 0.79 −4.7 6.92 27.8 0.72

Northwest 5,943 1 0.59 0.49 0.8 0.71 −1.6 5.33 30.2 0.72

Central Plains 19,038 2 0.61 0.50 0.8 0.71 −7.6 5.11 31.3 0.66

PM2.5-10
H All 41,098 1,936 0.67 0.52 0.6 0.76 −3.2 4.18 38.9 0.61

Northeast 8,375 423 0.49 0.35 0.9 0.58 −8.9 3.46 42.7 0.53

Midwest 4,567 233 0.61 0.43 0.7 0.70 −1.5 3.72 34.4 0.49

Southeast 7,178 359 0.45 0.28 0.5 0.75 −4.2 3.02 38.0 0.36

Southcentral 3,614 23 0.61 0.40 0.9 0.62 −11.4 5.63 44.6 0.33

Southwest 9,237 296 0.74 0.56 0.5 0.81 −1.6 5.64 36.6 0.64

Northwest 2,579 340 0.55 0.47 0.3 0.92 18.1 3.97 48.2 0.58

Central Plains 5,548 262 0.56 0.41 0.6 0.74 −2.3 3.87 39.8 0.61
ACorresponds to regions shown in Figure 1.
BIncludes data from CV sets one through nine; see text for details.
CThree PM2.5 values above 70 μg/m3 (>99.99th percentile) and one low value, as well as 22 PM10 values above 150 μg/m3 (>99.99th percentile) were excluded
from CV statistics as outliers. Extreme values may have been due to local events such as wildland or other fires, dust storms, etc.
DCalculated on the native rather than natural-log scale and among observations used for CV for comparison to the CV R2. For PM2.5–10, predicted levels<=0
were removed.
EFrom major axis regression of predictions on measurements (both are natural-log transformed monthly means); see text for details.
FNMBF is normalized mean bias factor; CVMAE is cross-validation mean absolute error; NMEF is normalized mean error factor; see text for details.
GSpatial CV R2 calculated at 1,245, 1,192, and 512 sites with >35 valid monthly-average measurements for PM2.5, PM10, and PM2.5–10, respectively.
HCalculated as the difference between monthly PM10 and PM2.5 measurements and, separately, monthly PM10 and PM2.5 model predictions. Of the 1,936 values
excluded as outliers, 11 were removed due to extreme PM10 or PM2.5 measurements; an additional 1,925 were due to measured or predicted PM2.5–10 below the
limit of detection of 0.57 μg/m3 (<3.4th percentile of measured and <1.6th of predicted PM2.5–10).
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and seasons), indicating greater residual spatial variabil-

ity in the seasonal (natural-logged) PM2.5 PMˆ 10 ratio
than in the monthly spatial terms from the 1999–
2007 PM2.5 or 1988–2007 PM10 models.
1988–2007 PM10 model covariates
The 1988–2007 PM10 model included the same set of me-
teorological and GIS-based time-invariant spatial covariates
as the 1999–2007 PM2.5 model, except that in addition it
included tract-level population density. The effects of these
covariates were similar to those in the 1999–2007 PM2.5

model, except as discussed below.
For the 1988–2007 PM10 model, we found significant

regional interactions only for urban land use within 1 km,
with effects in the Northeast, Northwest, and Central
Plains regions different from that in the remaining regions.
The estimated smooth functions for this covariate showed
that it was generally associated with increasing PM10 (after
adjusting for other model covariates), with the pattern
varying slightly by region (Additional file 1: Figure S1
panel C4).



Table 2 Bias and precision statistics from cross-validation (CV) of PM2.5, PM10, and PM2.5–10 models from 1988–1998

Pollutant RegionA Monthly values Spatial
CV R2GNB N excludedC Model R2D CV R2 InterceptE SlopeE NMBF (%)F CVMAEF NMEF (%)F

PM2.5
H All 10,823 0 0.82 0.77 0.2 0.92 −0.8 1.81 14.8 0.88

Northeast 2,455 0 0.77 0.72 0.2 0.93 −0.5 1.73 13.0 0.85

Midwest 1,564 0 0.74 0.70 0.3 0.88 −1.3 1.64 12.2 0.78

Southeast 2,385 0 0.76 0.73 0.1 0.97 −1.0 1.74 11.7 0.78

Southcentral 1,446 0 0.74 0.67 0.4 0.86 0.2 1.67 15.6 0.77

Southwest 1,205 0 0.84 0.77 0.2 0.93 1.3 2.49 22.8 0.89

Northwest 809 0 0.75 0.56 0.4 0.81 −6.1 2.12 26.8 0.60

Central Plains 959 0 0.77 0.67 0.1 0.95 −1.2 1.55 20.2 0.81

PM10 All 145,398 12 0.71 0.58 0.5 0.82 −3.3 5.44 21.8 0.66

Northeast 35,593 5 0.66 0.57 0.5 0.83 −2.5 4.71 18.2 0.57

Midwest 16,276 0 0.65 0.51 0.7 0.78 −2.9 5.57 20.4 0.55

Southeast 26,882 0 0.72 0.61 0.5 0.84 −1.7 4.04 15.6 0.57

Southcentral 12,668 0 0.66 0.50 0.9 0.72 0.1 5.20 21.2 0.50

Southwest 23,586 5 0.76 0.60 0.5 0.84 −5.1 7.52 27.4 0.68

Northwest 8,874 2 0.63 0.52 0.9 0.72 −4.2 6.86 26.0 0.66

Central Plains 21,069 0 0.64 0.50 0.6 0.76 −7.4 5.57 31.7 0.66

PM2.5-10
I All 4,032 205 0.61 0.45 0.7 0.70 −4.7 4.73 42.6 0.56

Northeast 802 48 0.52 0.32 0.9 0.56 −14.6 4.28 46.5 0.37

Midwest 378 21 0.64 0.47 0.8 0.66 −4.4 4.28 36.9 0.44

Southeast 771 58 0.35 0.12 1.1 0.51 1.7 3.66 43.3 0.09

Southcentral 453 2 0.58 0.43 0.8 0.68 −5.1 5.35 38.2 0.38

Southwest 835 34 0.70 0.53 0.4 0.81 −8.4 6.15 44.4 0.70

Northwest 271 15 0.60 0.54 0.6 0.85 27.0 4.14 47.5 0.63

Central Plains 522 27 0.42 0.32 0.7 0.69 −4.8 4.81 45.9 0.42
ACorresponds to regions shown in Figure 1.
BIncludes data from CV sets one through nine; see text for details.
C12 PM10 values above 150 μg/m3 (>99.99th percentile) were excluded from CV statistics as outliers. Extreme values may have been due to local events such as
wildland or other fires, dust storms, etc.
DCalculated on the native rather than natural-log scale and among observations used for CV (for only the year 2000 for PM2.5 and PM2.5–10) for comparison to the
CV R2. For PM2.5–10, predicted levels<=0 were removed.
EFrom major axis regression of predictions on measurements (both are natural-log transformed monthly means); see text for details.
FNMBF is normalized mean bias factor; CVMAE is cross-validation mean absolute error; NMEF is normalized mean error factor; see text for details.
GSpatial CV R2 calculated at 1,031 and 422 sites with >3 valid monthly-average measurements for PM2.5 and PM2.5–10, respectively, and at 1,502 sites with >35 valid
monthly-average measurements for PM10.
HMeasured and predicted levels (rather than the natural-log of the PM2.5 to PM10 ratio) were compared.
ICalculated as the difference between monthly PM10 and PM2.5 measurements and, separately, monthly PM10 and PM2.5 model predictions. Of the 207 values
excluded as outliers, 8 were removed due to extreme PM10 or PM2.5 measurements; an additional 197 were due to measured or predicted PM2.5–10 below the limit
of detection of 0.57 μg/m3 (<3.6th percentile of measured and <1.5th of predicted PM2.5–10).
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Tract-level population density was negatively associated
with measured PM10 levels (Additional file 1: Figure S1
panel C8).
The second-stage spatial term g(si) exhibited substantial

complexity in the 1988–2007 PM10 model, using 882.6 df.
In contrast, the monthly spatial terms gt,r(si) used fewer df
(median across regions and months of 20.1).

Modeling assumptions
Our modeling approach assumes stationary and isotropic
spatial variation, that covariate effects are additive, and
that model residuals are independent and normally
distributed, with mean zero and constant variance. We
evaluated the assumption of stationarity in the second
stage spatial term in alternative second stage models that
allowed the smoothing parameter to vary across the do-
main (adaptive bases), including those that allowed station-
arity to vary by urbanness, but these did not substantially
change model fit nor increase predictive accuracy. We also
evaluated whether the effects of the GIS-based time-
invariant spatial covariates (other than urban land use) var-
ied with urbanness by stratifying by tertiles of urban land
use within 1 km; we found no evidence of differential co-
variate effects by urbanness. Finally, we evaluated temporal
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autocorrrelation in model residuals; the resulting plots are
provided in Additional file 1: Figure S3. Though the plot
for the 1988–1998 PM2.5 model residuals shows only lim-
ited evidence of autocorrelation, plots for the other two
models show evidence of modest autocorrelation at a lag of
one month and, to a lesser extent, seasonal dependence (at
lags ~12 months) not accounted for in the modeling.

Discussion
Our modeling approach provides predictions of monthly
outdoor PM2.5, PM10, and PM2.5–10 levels at any location
within the conterminous U.S. with high spatial and tem-
poral (i.e., monthly) resolution over a 20-year period
(1988–2007). Model performance was particularly strong
for PM2.5, with a CV R2 of 0.77 for both 1988–1988 and
1999–2007 time periods. Although lower, model per-
formance for PM10 and PM2.5–10 was reasonable (CV
R2=0.58 and 0.52, respectively). The strong model per-
formance can be attributed to the fact that our models in-
corporate regionally-varying spatial and spatio-temporal
covariate effects and account for residual spatio-temporal
interaction using regional time-varying (monthly for the
1999–2007 PM2.5 and 1988–2007 PM10 models and sea-
sonal for the 1988–1998 PM2.5 model) spatial smooth
terms in combination with spatially smooth terms of the
long-term mean. This approach gives our models the abil-
ity to account for micro (<100 m) , middle (100–500 m),
neighborhood (500 m-4 km), and urban (4–50 km)-scale
spatial gradients as well as larger-scale regional effects that
vary over time. Further, this approach has the added bene-
fit of straightforward interpretation of covariate effects on
predicted PM levels, albeit where not obscured by collin-
earity or concurvity. Since model predictions can be made
at a subject’s residence or other relevant point location, ra-
ther than interpolated from a pre-defined grid, our models
offer high spatial resolution which may reduce exposure
error when estimating chronic exposures in epidemiologic
studies, as has been shown in previous analyses [11,25,26].
The models have been used to provide PM2.5, PM10, and
PM2.5–10 monthly exposure estimates at subject residences
in recent epidemiologic analyses [47,48].
Of the covariates evaluated for inclusion in the three

models, several were found to be important predictors in
each of the three models: wind speed, air temperature,
total precipitation, air stagnation, and elevation. Also, the
1999–2007 PM2.5 and 1988–2007 PM10 models both in-
cluded county population density, point-source emissions
density (for the corresponding PM size fraction), distance
to nearest road for road classes A1-A3, and urban land
use within 1 km. Also, in the 1999–2007 PM2.5 and
1988–1998 PM2.5 models, we found regional variation
in the effects of elevation, and, in the 1999–2007 PM2.5

and 1988–2007 PM10 models, of urban land use within
1 km. The robustness of our findings may be due to our
covariate selection procedures which were performed
using the fully specified spatio-temporal model, allow-
ing for residual spatial trends and changing covariate ef-
fects, including potential nonlinearity in those effects,
to compete with each candidate covariate, in contrast to
approaches where covariate selection is based on mul-
tiple linear regression before spatial modeling is per-
formed. Su et al. [49] used a more complicated variable
selection approach, but one that may lead to over-fitting
and that is not practical for models with large geo-
graphic and temporal scopes such as ours, with approxi-
mately 125,000-250,000 observations and run times for
one model fit of between 24 and 96 hours. Kloog et al.
[22] and Sampson et al. [16] have described attractive
alternative approaches, which allow for the inclusion of
large numbers of covariates while shrinking their ef-
fects, but these approaches also increase model com-
plexity and may thus not be practical for models applied
to the entire conterminous U.S. that span many years of
monthly data.
Spatial trends in long-term (1999–2007) mean PM2.5

levels from our modeling approach, presented in Figure 2,
are broadly similar to those in a recent spatial analysis of
annual-average PM2.5 levels in the year 2000 [16] and to
those in our earlier work in the Northeastern and
Midwestern US [11-13]. It is possible that with additional
covariates, such as satellite-derived AOD measures
[19-24], model predictive accuracy (i.e., CV R2) may im-
prove, especially in areas far from monitors [24]. Although
models have been developed that incorporate satellite-
derived measures, to date there have been limited compar-
isons to GIS-based spatio-temporal models. For example,
Lee et al. [24] used satellite-derived AOD data in combin-
ation with a low spatial resolution (2° × 2.5°) global 3-D
chemical transport model (GEOS-Chem) to estimate
PM2.5 levels in the conterminous U.S., but compared it to
a kriging model without geographic or meteorological co-
variates that could explain small-scale spatial variability.
Paciorek et al. [18] compared hierarchical spatio-temporal
models that included geographic and meteorological co-
variates with satellite-derived AOD vs. those without, but
only in mid-Atlantic region of the U.S., at the monthly
time scale, and over one year: 2004. These models had
high predictive ability, but inclusion of AOD did not im-
prove predictive accuracy (monthly CV R2=0.827 without
AOD and 0.825 with calibrated Moderate Resolution
Imaging Spectroradiometer or Geostationary Oper-
ational Environmental Satellite AOD). More recent
studies demonstrate the utility of daily as opposed to
monthly satellite-derived AOD measures in New England
and the mid-Atlantic states [21,22], reporting yearly CV R2

values of 0.83 and 0.81, respectively. However, these
models cannot be used to predict PM levels before the
year 2000, given that they require satellite-derived AOD
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data that are not available before that time period. Given
the air quality monitoring, meteorological, geographic, and
other data available from 1988–2007, our modeling ap-
proach provides a reasonable balance of computational
feasibility (using standard software) and complexity while
representing the small- and large-scale spatial, temporal,
and spatio-temporal features of the data.

Conclusions
Our models provide estimates of monthly-average outdoor
concentrations of PM2.5, PM10, and PM2.5–10 with high
spatial resolution and low bias. For PM2.5 and PM10, the
models performed well in urban and rural areas and across
seasons, though performance varied somewhat by region of
the conterminous U.S. For PM2.5–10, model performance
was poorer, particularly in the Southeast and Southcentral
regions. Regional variation was found in the effects of geo-
graphic and meteorological covariates. The models are suit-
able for estimating chronic PM exposures of populations
living in the conterminous U.S. from 1988 to 2007.

Additional files

Additional file 1: This file contains the additional results, formulas,
tables, and figures referred to the in the main text. It is provided in
portable document format (pdf).

Additional file 2: This file contains a 240-page atlas of monthly
model predicted PM2.5 mass concentrations (in μg/m3) from
January 1988 to December 2007 plotted on a 6 km grid over the
conterminous U.S. Note: Model predictions for months prior to
January 1999 are from the 1988–1998 PM2.5 model; thereafter they
are from the 1999–2007 PM2.5 model. Also, note that the scale of the
legend changes across months to highlight spatial contrasts within a
given month. The file is provided in portable document format (pdf).

Abbreviations
AOD: Aerosol optical depth; AQS: Air quality system; CASTNet: Clean air
status and trends network; CFCC: U.S. census feature class code; CV:
Cross-validation; CVMAE: Mean of the absolute value of the prediction errors;
ESRI: Environmental systems research institute; IMPROVE: Interagency
monitoring of protected visual environments; LUR: Land use regression;
GAM: Generalized additive model; GAMM: Generalized additive mixed model;
GIS: Geographic information system; MOHAVE: Measurement of haze and
visual effects; NCDC: National climatic data center; NHPN: National highway
planning network; NMBF: Normalized mean bias factor; NMEF: Normalized
mean error factor; PM: Particulate matter; PM2.5: Fine particulate matter; mass
concentration of PM<2.5 μm in aerodynamic diameter; PM10: Inhalable
particulate matter; mass concentration of PM<10 μm in aerodynamic
diameter; PM2.5–10: Coarse mode particle mass; mass concentration of PM>=
2.5 and <10 μm in aerodynamic diameter; PREVENT: Pacific Northwest
Regional visibility experiment using natural tracers; SEAVS: Southeastern
aerosol and visibility study; SEARCH: Southern aerosol research and
characterization study; SFU: Stacked filter unit; USGS: U.S. geological survey.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JDY participated in the inception of the study, participated in its design,
compiled and processed the geographic, meteorological, and air pollutant
data, developed the statistical models, and drafted and revised the
manuscript. CJP participated in the inception of the study, participated in its
design, participated in the interpretation of results of the statistical modeling,
and reviewed and revised the manuscript. FL obtained the original funding
for the study, participated in the inception of the study, participated in the
interpretation of results of the statistical modeling, and reviewed and revised
the manuscript. JEH and RCP participated in the interpretation of results of
the statistical modeling and reviewed and revised the manuscript. DL
reviewed and revised the manuscript. HHS participated in the inception of
the study, participated in the interpretation of results of the statistical
modeling, and reviewed and revised the manuscript. All authors read and
approved the final manuscript.
Acknowledgements
This research was supported by National Institutes of Health grant numbers
R01 ES017017 and R01 ES019168.

Author details
1Department of Public Health Sciences, The Pennsylvania State University
College of Medicine, Hershey, PA, USA. 2Department of Statistics, University
of California, Berkeley, CA, USA. 3Exposure, Epidemiology, and Risk Program,
Department of Environmental Health, Harvard School of Public Health,
Boston, MA, USA. 4Channing Division of Network Medicine, Department of
Medicine, Brigham and Women’s Hospital and Harvard Medical School,
Boston, MA, USA. 5Maryland Institute of Applied Environmental Health,
University of Maryland School of Public Health, College Park, MD, USA.
6Department of Health Sciences, Bouve College of Health Sciences,
Northeastern University, Boston, MA, USA.

Received: 25 April 2014 Accepted: 23 July 2014
Published: 5 August 2014
References
1. Anderson JO, Thundiyil JG, Stolbach A: Clearing the air: A review of the

effects of particulate matter air pollution on human health. J Med Toxicol
2012, 8:166–175.

2. Pope CA III, Dockery DW: Health effects of fine particulate air pollution:
Lines that connect. J Air Waste Manage Assoc 2006, 56:709–742.

3. Brunekreef B, Forsberg B: Epidemiological evidence of effects of coarse
airborne particles on health. Eur Respir J 2005, 26:309–318.

4. Beelen R, Hoek G, Fischer P, van den Brandt PA, Brunekreef B: Estimated
long-term outdoor air pollution concentrations in a cohort study.
Atmos Environ 2007, 41:1343–1358.

5. Beelen R, Hoek G, Pebesma E, Vienneau D, de Hoogh K, Briggs DJ: Mapping
of background air pollution at a fine spatial scale across the European
Union. Sci Total Environ 2009, 407:1852–1867.

6. Diez Roux AV, Auchincloss AH, Franklin TG, Raghunathan T, Barr RG,
Kaufman J, Astor B, Keeler J: Long-term exposure to ambient particulate
matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic
Study of Atherosclerosis. Am J Epidemiol 2008, 167:667–675.

7. Gilbert NL, Goldberg MS, Beckerman B, Brook JR, Jerrett M: Assessing spatial
variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use
regression model. J Air Waste Manage Assoc 2005, 55:1059–1063.

8. Jerrett M, Arain MA, Kanaroglou P, Beckerman B, Crouse D, Gilbert NL, Brook JR,
Finkelstein N, Finkelstein MM: Modeling the intraurban variability of ambient
traffic pollution in Toronto, Canada. J Toxicol Environ Health Part A 2007,
70:200–212.

9. Jerrett M, Burnett RT, Ma R, Pope CA III, Krewski D, Newbold KB, Thurston G,
Shi Y, Finkelstein N, Calle EE, Thun MJ: Spatial analysis of air pollution and
mortality in Los Angeles. Epidemiol 2005, 16:727–736.

10. Liao D, Peuquet DJ, Duan Y, Whitsel EA, Dou J, Smith RL, Lin HM, Chen JC,
Heiss G: GIS approaches for the estimation of residential-level ambient
PM concentrations. Environ Health Perspect 2006, 114:1374–1380.

11. Paciorek CJ, Yanosky JD, Puett RC, Laden F, Suh HH: Practical large-scale
spatio-temporal modeling of particulate matter concentrations. Ann Appl
Stat 2009, 3:370–397.

12. Yanosky JD, Paciorek CJ, Schwartz J, Laden F, Puett R, Suh HH: Spatio-
temporal modeling of chronic PM10 exposure for the Nurses’ Health
Study. Atmos Environ 2008, 42:4047–4062.

13. Yanosky JD, Paciorek CJ, Suh HH: Predicting chronic fine and coarse
particulate exposures using spatiotemporal models for the
Northeastern and Midwestern United States. Environ Health Perspect
2009, 117:522–529.

http://www.biomedcentral.com/content/supplementary/1476-069X-13-63-S1.pdf
http://www.biomedcentral.com/content/supplementary/1476-069X-13-63-S2.pdf


Yanosky et al. Environmental Health 2014, 13:63 Page 15 of 15
http://www.ehjournal.net/content/13/1/63
14. Szpiro A, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman J:
Predicting intra-urban variation in air pollution concentrations with
complex spatio-temporal dependencies. Environmetrics 2010, 21:606–631.

15. Sampson PD, Szpiro AA, Sheppard L, Lindström J, Kaufman JD: Pragmatic
estimation of a spatio-temporal air quality model with irregular
monitoring data. Atmos Environ 2011, 45:6593–6606.

16. Sampson PD, Richards M, Szpiro AA, Bergen S, Sheppard L, Larson TV,
Kaufman JD: A regionalized national universal kriging model using Partial
Least Squares regression for estimating annual PM2.5 concentrations in
epidemiology. Atmos Environ 2013, 75:383–392.

17. McMillan NJ, Holland DM, Morara M, Feng J: Combining numerical model
output and particulate data using Bayesian space–time modeling.
Environmetrics 2010, 21:48–65.

18. Paciorek CJ, Liu Y: Limitations of remotely sensed aerosol as a spatial proxy
for fine particulate matter. Environ Health Perspect 2009, 117:904–909.

19. Emili E, Popp C, Petitta M, Riffler M, Wunderle S, Zebisch M: PM10 remote
sensing from geostationary SEVIRI and polar-orbiting MODIS sensors
over the complex terrain of the European Alpine region. Rem Sens
Environ 2010, 114:2485–2499.

20. Al-Hamdan M, Crosson W, Limaye A, Rickman D, Quattrochi D, Estes M Jr,
Qualters J, Sinclair A, Tolsma D, Adeniyi K, Niskar A: Methods for
characterizing fine particulate matter using ground observations and
remotely sensed data: Potential use for environmental public health
surveillance. J Air Waste Manage Assoc 2009, 59:865–881.

21. Kloog I, Koutrakis P, Coull BA, Joo Lee H, Schwartz J: Assessing temporally
and spatially resolved PM2.5 exposures for epidemiological studies using
satellite aerosol optical depth measurements. Atmos Environ 2011,
45:6267–6275.

22. Kloog I, Nordio F, Coull B, Schwartz J: Incorporating local land use
regression and satellite aerosol optical depth in a hybrid model of
spatiotemporal PM2.5 exposures in the mid-Atlantic states. Environ Sci
and Tech 2012, 46:11913–11921.

23. van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C,
Villeneuve PJ: Global estimates of ambient fine particulate matter
concentrations from satellite-based aerosol optical depth: Development
and application. Environ Health Perspect 2010, 118:847–855.

24. Lee S, Serre ML, van Donkelaar A, Martin RV, Burnett RT, Jerrett M:
Comparison of geostatistical interpolation and remote sensing
techniques for estimating long-term exposure to ambient PM2.5

concentrations across the continental United States. Environ Health
Perspect 2012, 120:1727–1732.

25. Puett RC, Hart JE, Yanosky JD, Paciorek CJ, Schwartz J, Suh HH, Speizer FE,
Laden F: Chronic fine and coarse particulate exposure, mortality, and
coronary heart disease in the Nurses’ Health Study. Environ Health
Perspect 2009, 117:1697–1701.

26. Puett RC, Schwartz J, Hart JE, Yanosky JD, Speizer FE, Suh H, Paciorek CJ,
Neas LM, Laden F: Chronic particulate exposure, mortality, and coronary
heart disease in the Nurses’ Health Study. Am J Epi 2008, 168:1161–1168.

27. Visibility Information Exchange Web System: Visibility Information
Exchange Web System. In Available at: http://views.cira.colostate.edu/web/
(Accessed 5 March 2009).

28. Suh H, Nishioka Y, Allen G, Koutrakis P, Burton R: The Metropolitan Acid
Aerosol Characterization Study: Results from the summer 1994
Washinton, D.C. field study. Environ Health Perspect 1997, 105:826–834.

29. Spengler J, Koutrakis P, Dockery D, Raizenne M, Speizer F: Health effects of
acid aerosols on North American children: Air pollution exposures.
Environ Health Perspect 1996, 104:492–499.

30. Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr,
Speizer FE: An association between air pollution and mortality in six U.S.
cities. N Engl J Med 1993, 329:1753–1759.

31. SEARCH public data archive. In Available at: http://www.atmospheric-
research.com/public/index.html (Accessed 31 October 2008).

32. U.S. Department of Transportation, Bureau of Transportation Statistics: In
Available at: http://www.atmospheric-research.com/public/index.html
(Accessed 31 October 2008).

33. Silverman BW: Density Estimation for Statistics and Data Analysis. New York:
Chapman and Hall; 1986:76. equation 4.5.

34. Zhu Y, Hinds WC, Kimb S, Shenc S, Sioutas C: Study of ultrafine particles
near a major highway with heavy-duty diesel traffic. Atmos Environ 2002,
36:4323–4335.
35. Zhou Y, Levy JI: Factors influencing the spatial extent of mobile source
air pollution impacts: A meta-analysis. BMC Public Health 2007, 7:89.

36. U.S. Geological Survey: National Land Cover Dataset. In Available at:
http://www.mrlc.gov/ (Accessed 27 May 2004).

37. U.S. Bureau of the Census: TIGER/Line Shapefiles. In Available at: http://
census.gov (Accessed 15 September 2008).

38. Wood SN: Generalized additive models: An introduction with R. Chapman &
Hall/CRC: Boca Raton, FL; 2006.

39. U.S. Environmental Protection Agency: National Emissions Inventory. In
Available at: http://www.epa.gov/ttn/chief/trends/ (Accessed 6 October 2005).

40. U.S. Geologic Survey: National Elevation Dataset. In Available at: http://ned.
usgs.gov/ (Accessed 2 May 2005).

41. U.S. Bureau of the Census: Census Regions and Divisions of the United
States. In Available at: https://www.census.gov/geo/maps-data/maps/pdfs/
reference/us_regdiv.pdf (Accessed 25 June 2008).

42. Wang JXL, Angell JK: Air Stagnation Climatology for the United States
(1948–1998); Available at: http://www.arl.noaa.gov/documents/reports/
atlas.pdf.

43. Hastie T, Tibshiriani R: Generalized additive models. New York: Chapman and
Hall; 1990.

44. Wood SN: Stable and efficient multiple smoothing parameter estimation
for generalized additive models. J Am Stat Assoc 2004, 99:673–686.

45. R Development Core Team: R: A language and environment for statistical
computing. In Volume ISBN 3-900051-07-0. Vienna, Austria: R Foundation
for Statistical Computing; 2009. Available at: http://www.R-project.org.

46. Legendre P: Model II Regression. In Volume R package version 1.7-0; 2011.
Available at: http://CRAN.R-project.org/package=lmodel2.

47. Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F: Exposure
to particulate air pollution and cognitive decline in older women.
Arch Intern Med 2012, 172:219–227.

48. Mahalingaiah S, Hart JE, Laden F, Missmer SA: Association of air pollution
exposures and risk of endometriosis in the Nurses’ Health Study II.
Environ Health Perspect 2014, 122:58–64.

49. Su JG, Jerrett M, Beckerman B: A distance-decay variable selection strategy
for land use regression modeling of ambient air pollution exposures.
Sci Tot Environ 2009, 407:3890–3898.

doi:10.1186/1476-069X-13-63
Cite this article as: Yanosky et al.: Spatio-temporal modeling of
particulate air pollution in the conterminous United States using
geographic and meteorological predictors. Environmental Health
2014 13:63.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://views.cira.colostate.edu/web/
http://www.atmospheric-research.com/public/index.html
http://www.atmospheric-research.com/public/index.html
http://www.atmospheric-research.com/public/index.html
http://www.mrlc.gov/
http://census.gov/
http://census.gov/
http://www.epa.gov/ttn/chief/trends/
http://ned.usgs.gov/
http://ned.usgs.gov/
https://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf
https://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf
http://www.arl.noaa.gov/documents/reports/atlas.pdf
http://www.arl.noaa.gov/documents/reports/atlas.pdf
http://www.r-project.org/
http://cran.r-project.org/package=lmodel2

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Air pollution, geographic, and meteorological data
	Air pollution data
	Geographic data
	Meteorological data

	Statistical models
	The 1999–2007 PM2.5 model
	The 1988–1998 PM2.5 model
	The 1988–2007 PM10 model
	Model predictions
	Model validation
	Model development and covariate selection


	Results
	Spatial patterns in model predicted PM2.5, PM10, and PM2.5–10 concentrations
	CV results
	CV results for 1999–2007
	CV results for 1988–1998

	Model covariate effects
	1999–2007 PM2.5 model covariates

	1988–1998 PM2.5 model covariates
	1988–2007 PM10 model covariates
	Modeling assumptions

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


